当前位置:扬帆学习网文章频道免费教案数学教案八年级数学教案人教版数学八年级《平行四边形的判定(1)》教学设计

人教版数学八年级《平行四边形的判定(1)》教学设计

浏览次数: 698次| 发布日期:06-12 12:18:03 | 八年级数学教案
标签:人教版八年级数学教案,初中数学教案,http://www.yf1234.com 人教版数学八年级《平行四边形的判定(1)》教学设计,

5.5 平行四边形的判定(1)
【教学目标】
1.平行四边形的判定定理及应用.
2.会综合运用平行四边形的判定定理和性质定理来解决问题.
3.会根据条件来画出平行四边形.
4.培养用类比、逆向联想及运动的思维方法来研究问题.
【教学重点、难点】
 重点:平行四边形的判定定理(一)及应用.
 难点:平行四边形的判定定理与性质定理的灵活应用.
【教学过程】
  一、用类比、逆向思维的方式探索平行四边形的判定方法
  1.复习平行四边形的主要性质,
  
  角:(c)两组对角相等.(性质3)(等价命题:两组邻角互补)
  对角线:(d)对角线互相平分.(性质4)
2.逆向思维:怎样判定一个四边形是平行四边形?
  (1)学生容易由定义得出:两组对边分别平行的四边形是平行四边形(判定方法一).也就是说,定义既是平行四边形的一个性质,又是它的一个判定方法.
  (2)观察判定方法一与性质1的关系,寻找逆命题的特征:
   (3)类比联想,猜想其他性质的逆命题也能判定平行四边形,构造逆命题如下:
  ①两组对边分别相等的四边形是平行四边形(猜想1);
  (4)证明猜想,得到平行四边形的判定定理1.
  教师引导学生根据平行四边形的定义以及平行线的性质、三角形全等的知识对以上猜想
进行证明.实际,让学生利用上述方法得出有关平行四边形判定方法的部分常用(或全部)猜想.(教师也可用判断题的形式让学生思考,从而降低难度)
  猜想一:一组对边平行且相等的四边形是平行四边形.
  猜想二:一组对边平行且另一组对边相等的四边形是平行四边形.
猜想三:一组对边相等且一组对角相等的四边形是平行四边形.
  (3)证明猜想成立或举例说明某猜想不成立.
  以上猜想中正确的是猜想一,猜想二和三的反例图形分别见图4-21(a),(b).
如图4-21(a),在四边形ABCD中, AD //BC, AB=DC,但四边形ABCD不是平行四边形;在图4-21(b)中, AB=AC=DE,∠B=∠C=∠D,但四边形 ABED不是平行四边形.
 (4)总结。平行四边形判定方法,根据题目条件从中灵活选用方法来解决问题.
  二、判定定理的巩固练习
  1.利用平行四边形的判定定理及性质定理进行证明.
例1已知:如图 4-22,E和F是ABCD对角钱AC上两点,AE=CF.求证:四边形BFDE是平行四边形.
  
  说明:引导学生从条件、结论两方面对题目进行再思考.
  (1)在此基础上,还可证出什么结论?用到什么方法?如还可证BEDF,DEBF, ∠BED=∠BFD等.总结方法:利用平行四边形的性质——判定——性质可解决较复杂的几何题目.
  (2)根据运动、类比、特殊化的思维方法,猜想对此题可作怎样的推广?
类比例1条件,利用运动变化的观点,让E和F在对角线AC上运动到一些特殊位置,猜想还可得出同样结论如图4-23,但其中的猜想无法证明.
缺图4-23
  猜想一如图 4-23(a),在ABCD中, E,F为AC上两点,∠ABE=∠CDF.求证:四边形BEDF为平行四边形.
  猜想二如图4-23(b),在ABCD中,E,F为AC上两点,BE//DF.求证:四边形BEDF为平行四边形.
  猜想三如图 4-23(c),在ABCD中, E,F为AC上两点, BE=DF.求证:四边形 BEDF为平行四边形.
猜想四如图4-23(d),在ABCD中,E,F分别是AC上两点,BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF为平行四边形

例2已知:如图 4-24(a),在ABCD中,E,F分别是边AD,BC的中点.求证:EB=DF.
  说明:
  (1)分析证明思路,所要证明的两条线段恰为四边形EBFD的一组对边,由图中它们所在的位置来看,可首先判定四边形BEDF为平行四边形,再利用平行四边形的性质来解决.培养学生思维的层次:使用已知平行四边形的性质——判定新平行四边形——使用新平行四边形的性质得出结论.

[1] [2]  下一页


人教版数学八年级《平行四边形的判定(1)》教学设计