标签:人教版七年级数学教案,初中数学教案,http://www.yf1234.com
人教新课标数学七年级第五章《平行线的性质》第1课时教学设计,
8.平行线性质应用.
例 (课本P23)如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°, 梯形另外两个角分别是多少度?
教师把学生情况,可启发提问:①梯形这条件如何使用?②∠A与∠D、∠B 与∠C的位置关系如何,数量关系呢?为什么?
讲解按课本.
三、巩固练习
1.课本练习(P22).
2.补充:如图,BCD是一条直线,∠A=75°,∠1=53°,∠2=75°,求∠B的度数.
本题综合应用平行线的判定和性质,教师要引导学生观察图形,考察已知角的数量关系,确定解题的思路.
四、作业
1.课本P25.1,2,3,4,6.
2.补充作业:
一、判断题.
1.两条直线被第三条直线所截,则同旁内角互补.( )
2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )
3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.( )
二、填空题.
1.如图(1),若AD∥BC,则∠______=∠_______,∠_______=∠_______,
∠ABC+∠_______=180°; 若DC∥AB,则∠______=∠_______,
∠________=∠__________,∠ABC+∠_________=180°.
(1) (2) (3)
2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.
3.因为AB∥CD,EF∥CD,所以______∥______,理由是________.
4.如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:
因为∠ECD=∠E,
所以CD∥EF( )
又AB∥EF,
所以CD∥AB( ).
三、选择题.
1.∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2 的大小关系是( )
A.∠1=∠2 B.∠1>∠2; C.∠1<∠2 D.无法确定
2.一个人驱车前进时,两次拐弯后,按原来的相反方向前进, 这两次拐弯的角度是( )
A.向右拐85°,再向右拐95°; B.向右拐85°,再向左拐85°
C.向右拐85°,再向右拐85°; D.向右拐85°,再向左拐95°
四、解答题
1.如图,已知:∠1=110°,∠2=110°,∠3=70°,求∠4的度数.
2.如图,已知:DE∥CB,∠1=∠2,求证:CD平分∠ECB.
人教新课标数学七年级第五章《平行线的性质》第1课时教学设计由教案吧收集及整理,转载请说明出处www.yf1234.com
www.yf1234.com
5.3.2平行线的性质(第2课时)
平行线的性质(二)
教学目标
1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.毛
2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.
3.能够综合运用平行线性质和判定解题.
重点、难点
重点:平行线性质和判定综合应用,两条平行的距离,命题等概念.
难点:平行线性质和判定灵活运用.
教学过程
一、复习引入
1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)
2.平行线的性质有哪些.
3.完成下面填空.
已知:如图,BE是AB的延长线,AD∥BC,AB∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.
4.a⊥b,c⊥b,那么a与c的位置关系如何?为什么?
二、进行新课
1.例1 已知:如上图,a∥c,a⊥b,直线b与c垂直吗?为什么?
学生容易判断出直线b与c垂直.鉴于这一点,教师应引导学生思考:
人教新课标数学七年级第五章《平行线的性质》第1课时教学设计
人教新课标数学七年级第五章《平行线的性质》第1课时教学设计
浏览次数: 645次|
发布日期:09-07 19:10:40 | 七年级数学教案