2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。
教学重点:理解并掌握梯形面积的计算公式
教学难点:理解梯形面积公式的推导过程
教学过程:
一、复习导入:
1、回顾三角形面积公式的推导过程
2、导入:今天我们继续运用这种方法来研究梯形面积的计算。
二、探究新知:
1、教学例6:
(1)出示例6:
师:用例6中提供的梯形拼成平行四边形。(注意:组内所选的梯形都要齐全)
(2)小组交流:
你认为拼成一个平行四边形所需要的两个梯形有什么特点?
要使学生明确:用两个完全一样的梯形可以拼成一个平行四边形。
(3)测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。
师:如何计算一个梯形的面积?从表中可以看出梯形与拼成的平行四边形还有怎样的关系?(小组交流)
得出以下结论:
这两个完全一样的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼成一个平行四边形。
这个平行四边形的底等于 梯形的上底 + 下底
这个平行四边形的高等于 梯形的高
因为 每个梯形的面积等于拼成的平行四边形面积的 一半
人教版数学五年级《苏教版教材小学数学第九册全部备课笔》教学设计由教案吧收集及整理,转载请说明出处www.yf1234.com
www.yf1234.com 所以 梯形的面积 = (上底 + 下底)×高÷2
板书如下:
平行四边形的面积 = 底 × 高
2倍 一半
梯形的面积 = (上底 + 下底)× 高 ÷ 2
(4)用字母表示三角形面积公式:S = (a +b)h ÷ 2
三、巩固练习:
1、完成试一试:
完成练一练:
(1)学生计算后提问:用上、下底的和乘高后,为什么还要除以2 ?
(2)结合直观的图形或教具演示,简单介绍横截面的含义,再让学生结合公式进行计算。
四、全课总结:
师:通过今天的学习有哪些收获?
板书设计: 梯形面积的计算
转化
已学过的图形 新图形
拼摆
因为 平行四边形的面积= 底 × 高
2倍 一半
所以 梯形的面积 =(上底 + 下底) × 高 ÷ 2
课后札记:
第6课时:梯形面积的计算练习课
教学内容:完成第21页练习四
教学目标:
使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。
教学过程:
练习四
一、第2题 让学生先在小组里说说怎样找出面积相等的梯形。由于这4个梯形的高相等,只要比较它们的商、下底的和是否相等。这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的。
二、第3题 右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上、下底垂直的那条腰的长度就是梯形的高。
三、第5题 要注意两个问题:1、统一面积单位;2、讲清楚数量关系。
四、第6题 先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些。在此基础上,再让学生分别进行计算。
五、针对学生在学习过程中出现的问题适当的进行补充和强化。
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] 下一页
人教版数学五年级《苏教版教材小学数学第九册全部备课笔》教学设计