标签:九年级上册数学教案,初中数学教案,http://www.yf1234.com
北师大版数学九年级《你能证明它们吗(一)》教学设计之二,
你能证明它们吗(一)
一、教学目标:
1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。
3、结合实例体会反证法的含义。
二、教学重点:了解作为证明基础的几条公理的内容,通过等腰三角形性质证明,掌握证明的基本步骤和书写格式。
教学难点:能够用综合法证明等腰三角形的关性质定理和判定定理(特别是证明等腰三角形性质时辅助线做法)。
三、教学方法:观察法。
四、教学过程:
复习:
什么是等腰三角形?
你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。
试用折纸的办法回忆等腰三角形有哪些性质?
新课讲解:
在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。
同学们和我一起来回忆上学期学过的公理
本套教材选用如下命题作为公理 :
1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
2.两条平行线被第三条直线所截,同位角相等;
3.两边夹角对应相等的两个三角形全等; (SAS)
4.两角及其夹边对应相等的两个三角形全等; (ASA)
5.三边对应相等的两个三角形全等; (SSS)
6.全等三角形的对应边相等,对应角相等.
由公理5、3、4、6可容易证明下面的推论:
推论 两角及其中一角的对边对应相等的两个三角形全等。(AAS)
证明过程:
已知:∠A=∠D,∠B=∠E,BC=EF
求证:△ABC≌△DEF
证明:∵∠A+∠B+∠C=180°,
∠D+∠E+∠F=180°
(三角形内角和等于180°)
∴∠C=180°-(∠A+∠B)
∠F=180°-(∠D+∠E)
又∵∠A=∠D,∠B=∠E(已知)
∴∠C=∠F
又∵BC=EF(已知)
∴△ABC≌△DEF(ASA)
定理:等腰三角形的两个底角相等。
这一定理可以简单叙述为:等边对等角。
已知:如图,在ABC中,AB=AC。
求证:∠B=∠C
证明:取BC的中点D,连接AD。
∵AB=AC,BD=CD,AD=AD,
∴△ABC△≌△ACD (SSS)
∴∠B=∠C (全等三角形的对应边角相等)
(让同学们通过探索、合作交流找出其他的证明方法。做∠BAC的平分线,交BC边于D;过点A做AD⊥BC。。学生指出该定理的条件和结论,写出已知、求证,画出图形,并选择一种方法进行证明。)
想一想:
在上图中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论?
(应让学生回顾前面的证明过程,思考线段AD具有的性质和特征,讨论图中存在的相等的线段和相等的角,发现等腰三角形性质定理的推论,从而得到结论,这一结合通常简述为“三线合一”。)
推论 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。
随堂练习:
做教科书第4页第1,2题。(引导学生分析证明方法,学生动手证明,写出证明过程。)
课堂小结:
通过这节课的学习你学到了什么知识?
(学生小结:通过本课的学习我们了解了作为基础的几条公理的内容,掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。探体会了反证法的含义。)
五、作业:1、基础作业:P5页习题1.1 1、2。
2、拓展作业:《目标检测》3、预习作业:P5-6页 议一议
六、板书设计:
七、课后记:
北师大版数学九年级《你能证明它们吗(一)》教学设计之二由www.yf1234.com收集及整理,转载请说明出处www.yf1234.com
北师大版数学九年级《你能证明它们吗(一)》教学设计之二
北师大版数学九年级《你能证明它们吗(一)》教学设计之二
浏览次数: 419次|
发布日期:06-12 12:25:29 | 九年级数学教案