标签:人教版七年级数学教案,初中数学教案,http://www.yf1234.com
全国初中数学竞赛辅导(初1)第16讲 质数与合数,
第十六讲 质数与合数
我们知道,每一个自然数都有正因数(因数又称约数).例如,1有一个正因数;2,3,5都有两个正因数,即1和其本身;4有三个正因数:1,2,4;12有六个正因数:1,2,3,4,6,12.由此可见,自然数的正因数,有的多,有的少.除了1以外,每个自然数都至少有两个正因数.我们把只有1和其本身两个正因数的自然数称为质数(又称素数),把正因数多于两个的自然数称为合数.这样,就把全体自然数分成三类:1,质数和合数.
2是最小的质数,也是唯一的一个既是偶数又是质数的数.也就是说,除了2以外,质数都是奇数,小于100的质数有如下25个:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97.
质数具有许多重要的性质:
性质1 一个大于1的正整数n,它的大于1的最小因数一定是质数.
性质2 如果n是合数,那么n的最小质因数a一定满足a2≤n.
性质3 质数有无穷多个(这个性质将在例6中证明).
性质4(算术基本定理)每一个大于1的自然数n,必能写成以下形式:
这里的P1,P2,…,Pr是质数,a1,a2,…,ar是自然数.如果不考虑p1,P2,…,Pr的次序,那么这种形式是唯一的.
关于质数和合数的问题很多,著名的哥德巴赫猜想就是其中之一.哥德巴赫猜想是:每一个大于2的偶数都能写成两个质数的和.这是至今还没有解决的难题,我国数学家陈景润在这个问题上做了到目前为止最好的结果,他证明了任何大于2的偶数都是两个质数的和或一个质数与一个合数的和,而这个合数是两个质数的积(这就是通常所说的1+2).下面我们举些例子.
例1 设p,q,r都是质数,并且
p+q=r,p<q.
求p.
解 由于r=p+q,所以r不是最小的质数,从而r是奇数,所以p,q为一奇一偶.因为p<q,故p既是质数又是偶数,于是p=2.
例2 设p(≥5)是质数,并且2p+1也是质数.求证:4p+1是合数.
证 由于p是大于3的质数,故p不会是3k的形式,从而p必定是3k+1或3k+2的形式,k是正整数.
若p=3k+1,则
2p+1=2(3k+1)+1=3(2k+1)
是合数,与题设矛盾.所以p=3k+2,这时
4p+1=4(3k+2)+1=3(4k+3)
是合数.
例3 设n是大于1的正整数,求证:n4+4是合数.
证 我们只需把n4+4写成两个大于1的整数的乘积即可.
n4+4=n4+4n2+4-4n2=(n2+2)2-4n2
=(n2-2n+2)(n2+2n+2),
因为
n2+2n+2>n2-2n+2=(n-1)2+1>1,
所以n4+4是合数.
例4 是否存在连续88个自然数都是合数?
解 我们用n!表示1×2×3×…×n.令
a=1×2×3×…×89=89!,
那么,如下连续88个自然数都是合数:
a+2,a+3,a+4,…,a+89.
这是因为对某个2≤k≤89,有
a+k=k×(2×…×(k-1)×(k+1)×…×89+1)
是两个大于1的自然数的乘积.
说明 由本例可知,对于任意自然数n,存在连续的n个合数,这也说明相邻的两个素数的差可以任意的大.
用(a,b)表示自然数a,b的最大公约数,如果(a,b)=1,那么a,b称为互质(互素).
例5 证明:当n>2时,n与n!之间一定有一个质数.
证 首先,相邻的两个自然数是互质的.这是因为
(a,a-1)=(a,1)=1,
于是有(n!,n!-1)=1.
由于不超过n的自然数都是n!的约数,所以不超过n的自然数都与n!-1互质(否则,n!与n!-1不互质),于是n!-1的质约数p一定大于n,即n<p≤n!-1<n!.
所以,在n与n!之间一定有一个素数.
例6 证明素数有无穷多个.
证 下面是欧几里得的证法.
全国初中数学竞赛辅导(初1)第16讲 质数与合数
全国初中数学竞赛辅导(初1)第16讲 质数与合数
浏览次数: 335次|
发布日期:10-05 21:45:56 | 七年级数学教案