标签:人教版七年级数学教案,初中数学教案,http://www.yf1234.com
人教新课标数学七年级《完全平方公式》教学设计之一,
[师]这位同学的想法很好.因为他很留心我们表述的每一句话的含义,你能继续沿着这个思路做下去吗?我们一块试一下.
[师生共析]
(a-b)2=[a+(-b)]2=a2+2·a·(-b)+(-b)2
↓ ↓ ↓ ↓ ↓ ↓
(a +b)2=a2+2·a ·b + b2
=a2-2ab+b2.
于是,我们得到又一个公式:
(a-b)2=a2-2ab+b2 (2)
[师]你能用语言描述上述公式(1)、(2)吗?
[生]公式(1)用语言描述为:两个数的和的平方等于这两个数的平方和与它们积的2倍的和;公式(2)用语言描述为:两个数的差的平方等于这两个数的平方和与它们积的2倍的差.这两个公式为完全平方公式.它们和平方差公式一样可以使整式的运算简便.
2.应用、升华
出示投影片(§1.8.1 B)
[例1]利用完全平方公式计算:
(1)(2x-3)2;(2)(4x+5y)2;
(3)(mn-a)2.
分析:利用完全平方公式计算,第一步先选择公式;第二步,准确代入公式;第三步化简.
解:(1)方法一:
[例2]利用完全平方公式计算
(1)(-x+2y)2;(2)(-x-y)2;
(3)(x+y-z)2;(4)(x+y)2-(x-y)2;
(5)(2x-3y)2(2x+3y)2.
分析:此题需灵活运用完全平方公式,(1)题可转化为(2y-x)2或(x-2y)2,再运用平方差公式;(2)题需转化为(x+y)2,利用和的完全平方公式;(3)题利用加法结合律变形为[(x+y)-z]2(或[x+(y-z)]2、[(x-z)+y]2),再用完全平方公式计算;(4)题可利用完全平方公式,再合并同类项,也可逆用平方差公式进行计算.(5)题可先逆用幂的运算性质变形,再用平方差公式和完全平方公式.
解:(1)方法一:(-x+2y)2=(2y-x)2
=4y2-4xy+x2;
方法二:(-x+2y)2=[-(x-2y)]2=(x-2y)2=x2-4xy+4y2.
(2)(-x-y)2=[-(x+y)]2=(x+y)2=x2+2xy+y2.
(3)(x+y-z)2=[(x+y)-z]2=(x+y)2-2(x+y)·z+z2
=x2+y2+z2+2xy-2zx-2yz.
(4)方法一:(x+y)2-(x-y)2
=(x2+2xy+y2)-(x2-2xy+y2)
=4xy.
方法二:(x+y)2-(x-y)2
=[(x+y)+(x-y)][(x+y)-(x-y)]=4xy.
(5)(2x-3y)2(2x+3y)2
=[(2x-3y)(2x+3y)]2
=[4x2-9y2]2
=16x4-72x2y2+81y4.
Ⅲ.随堂练习
课本P34,1.计算:
人教新课标数学七年级《完全平方公式》教学设计之一由教案吧收集及整理,转载请说明出处www.yf1234.com
www.yf1234.com
(1)(x-2y)2;(2)(2xy+x)2;
(3)(n+1)2-n2.
解:(1)(x-2y)2=(x)2-2·x·2y+(2y)2=x2-2xy+4y2
(2)(2xy+x)2=(2xy)2+2·2xy·x+(x)2=4x2y2+x2y+x2
(3)方法一:(n+1)2-n2=n2+2n+1-n2=2n+1.
方法二:(n+1)2-n2=[(n+1)+n][(n+1)-n]=2n+1.
Ⅳ.课后作业
1.课本P36.习题1.13的第1、2、3题.
2.阅读“读一读”,并回答文章中提出的问题.
Ⅴ.活动与探究
甲、乙两人合养了n头牛,而每头牛的卖价恰为n元.全部卖完后两人分钱方法如下:先由甲拿10元,再由乙拿10元,如此轮流,拿到最后剩下不足十元,轮到乙拿去,为了平均分配,甲应该补给乙多少元钱?
[过程]因牛n头,每头卖n元,故共卖得n2元.
令a表示n的十位以前的数字,b表示n的个位数字.即n=10a+b,于是n2=(10a+b)2=100a2+
20ab+b2=10×2a(5a+b)+b2.
因甲先取10元,而乙最后一次取钱时不足10元,所以n2中含有奇数个10元,以及最后剩下不足10元.
但10×2a(5a+b)中含有偶数个10元,因此b2中必含有奇数个10元,且b<10,所以b2只可能是1、4、9、16、25、36、49、64、81,而这九个数中,只有16和36含有奇数个10,因此b2只可能是16或36,但这两个数的个位数都是6,这就是说,乙最后所拿的是6元(即剩下不足10元).
人教新课标数学七年级《完全平方公式》教学设计之一
人教新课标数学七年级《完全平方公式》教学设计之一
浏览次数: 739次|
发布日期:09-07 19:14:10 | 七年级数学教案