根据学生讨论,教师适时启发、引导,得出
分析2:如果 垂直坐标轴,则交点和距离都容易求出,那么不妨做出与坐标轴垂直的线段 和 ,如图1所示,显然相对而言 ,和 好求一些,事实上,设 到直线的距离为 , 坐标为 , 坐标为 ,则易求:
,
所以: ,
所以:
根据三角形面积公式:
所以: (至此问题2已经解决)
公式 的完善.
容易验证(由学生完成):
当 ,即 轴时,公式成立;
当 ,即 轴时,公式成立;
两条直线的位置关系由www.yf1234.com收集及整理,转载请说明出处www.yf1234.comwww.yf1234.com
当 点在 上时,公式成立.
公式 结构特点
师生一起总结:
(1)分子是 点坐标代入直线方程;
(2)分母是直线未知数 、 系数平方和的算术根.
类似于勾股定理求斜边的长
三、检测与巩固
练习1
(1) 到直线 的距离是________.
(2) 到直线 的距离是_______.
(3)用公式解 到直线 的距离是______.
(4) 到直线 的距离是_________.
订正答案:(1)5;(2)0;(3) ;(4) .
练习2
1.求平行直线 和 的距离.
解:在直线 上任取一点,如 ,则两平行线的距离就是点 到直线 的距离.
因此, = =
【问题3】
两条平行直线的距离是否有公式可以推出呢?求两条平行直线 与 0的距离.
解:在直线上 任取一点,如
则两平行线的距离就是点 到直线 的距离,(如图2).
因此, = =
注意:用公式时,注意一次项系数是否一致.
四、小结作业
1、点到直线的距离公式及其推导;
师生一起总结点到直线距离公式的推导过程:
2、利用公式求点到直线的距离.
3、探索两平行直线的距离
4、探索“已知点到直线的距离及一条直线求另一条直线距离.
两条直线的位置关系