③对于以上两个求角公式,在解决实际问题时,要注意根据具体情况选用.
(3)交点
①求两条直线的交点问题就是求它们的方程的公共解的问题,这可以由直线的方程与方程的直线的定义来理解.
②在同一平面内,两条直线有三种位置关系:相交、平行、重合,相应的由直线方程组成的二元一次方程组的解有三种情况:有惟一解、无解、无数多个解.但在实际判定时,利用直线的斜率和截距更方便.若 , ,则:
与 相交 ;
且 ;
与 重合 且 .
(4)点到直线的距离
①点到直线的距离公式是研究点与直线位置关系的重要工具.教科书借助于直角三角形的面积公式,推导出点到直线的距离公式.在推导过程中,把与两条坐标轴都不平行的线段的长度的计算,转化为与坐标轴平等或垂直的线段长度的计算,从而简化了运算过程.
②利用点到直线的距离公式可推出两平行线 , 间的距离公式: .
③点到直线距离公式的推导,有多种方法,应鼓励同学们思考,下面介绍一种较简便的方法.
如右图,设 ,过点 作直线 的垂线,垂足为 ,则有
即
得
,
即 ,
.
当 时,上述公式也成立.
(5)当直线中有一条没有斜率时,讨论平行、垂直、角、距离的问题,不必套用以上结论,这时可结合图形几何性质;直接求解.
两条直线的位置关系由www.yf1234.com收集及整理,转载请说明出处www.yf1234.comwww.yf1234.com
二、教法建议
1.本节知识与初中所学的平面几何知识和三角知识联系非常紧密,教学时应加强启发和引导.如学生对两条直线的平行同位角相等的条件已经非常熟悉,因此在研究两直线平行时,应引导学生迅速建立联系:同位角—倾斜角—斜率(直线方程).又如,在求 到 的角 时,根据图形中角的关系,建立 与倾斜角 和 的联系(有且只有 或 两种情况),进而借助三角建立与斜率的关系,得出公式.
2.本节内容中在研究两直线的垂直条件时,由于采用向量这一更高级的工具来处理,显得既简单又深刻.所以教学中应注意向量工具的运用,可让学生尝试用向量推导两直线平行的条件和点到直线距离公式的推导.
3.本节内容新概念不多,但要求推导的内容不少,教学时要坚持启发式的教学思想,重点放在思路的探求和结论或公式的运用上.本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能熟练地掌握公式,增强学生动手计算的能力.本节还要加强根据已知条件求直线方程的教学
两条直线的位置关系