当前位置:扬帆学习网文章频道免费教案数学教案高一数学教案上学期 2.4 反函数

上学期 2.4 反函数

浏览次数: 299次| 发布日期:06-12 12:28:39 | 高一数学教案
标签:人教版高一数学教案,新课程高一数学教案,http://www.yf1234.com 上学期 2.4 反函数,
的值域和定义域决定的.再把结论从特殊发展到一般,概括为:反函数的三要素是由原来函数的三要素决定的.给出的函数确定了,反函数的三要素就已经确定了.简记为“三定”.

  (1)“三定”(板书)

  然后要求学生把刚才的三定具体化,也就是“反”字的具体体现.由学生一一说出反函数的定义域是原来函数的值域,反函数的值域是原来函数的定义域,反函数的对应法则就是把原来函数对应法则中 的位置互换.(用投影仪打出互换过程)如图

  最后教师进一步明确“反”实际体现为“三反”, “三反”中起决定作用的是 与 的位置的反置,正是由于它的反置,才把它的范围也带走了,引起了另外两“反”.

  (2)“三反”(板书)

  此时教师可把问题再次引向深入,提出:如果一个函数存在反函数,应怎样求这个反函数呢?下面我给出两个函数,请同学们根据自己对概念的理解来求一下它们的反函数.

  例1. 求 的反函数.(板书)

  (由学生说求解过程,有错或不规范之处,暂时不追究,待例2解完之后再一起讲评)

上学期 2.4 反函数由www.yf1234.com收集及整理,转载请说明出处www.yf1234.com
www.yf1234.com

  解:由 , 所求反函数为 .(板书)

  例2. 求 , 的反函数.(板书)

  解:由 ,又 ,

  故所求反函数为 .(板书)

  求完后教师请同学们作评价,学生之间可以讨论,充分暴露表述中得问题,让学生自行发现,自行解决.最后找代表发表意见,指出例2中问题,结果应为 , .

  教师可先明知故问 ,与 , 有什么不同?让学生明确指出两个函数定义域分别是 ,所以它们是不同的函数.再追问

上学期 2.4 反函数由www.yf1234.com收集及整理,转载请说明出处www.yf1234.com
www.yf1234.com 从何而来呢?让学生能从三定和三反中找出理由,是从原来函数的值域而来.

  在此基础上,教师最后明确要求,由于反函数的定义域必是原来函数的值域,而不是从自身解析式出发寻求满足的条件,所以求反函数,就必须先求出原来函数的值域.之后由学生调整刚才的求解过程.

  解: 由 ,又 ,

  又 的值域是 ,

  故所求反函数为 , .

  (可能有的学生会提出例1中为什么不求原来函数的值域的问题,此时不妨让学生去具体算一算,会发现原来函数的值域域求出的函数解析式中所求定义域时一致的,所以使得最后结果没有出错.但教师必须指出结论得一致性只是偶然,而不是必然,因此为规范求解过程要求大家一定先求原来函数的值域,并且在最后所求结果上注明反函数的定义域,同时让学生调整例的表述,将过程补充完整)

  最后让学生一起概括求反函数的步骤.

  3.求反函数的步骤(板书)

  (1) 反解:

  (2) 互换

  (3) 改写:

  对以上环节教师可稍作解释,然后提出再通过下面的练习来检验是否真正理解了.

三.巩固练习

  练习:求下列函数的反函数.

   (1)     (2) .(由两名学生上黑板写)

  解答过程略.

  教师可针对学生解答中出现的问题,进行讲评.(如正负的选取,值域的计算,符号的使用)

四.小结

  1. 对反函数概念的认识:

上一页  [1] [2] [3]  下一页


上学期 2.4 反函数