同角三角函数的基本关系式
教学目标:
1.掌握同角三角函数之间的三组常用关系,平方关系、商数关系、倒数关系.
2.会运用同角三角函数之间的关系求三角函数值或化简三角式.
教学重点:
理解并掌握同角三角函数关系式.
教学难点:
已知某角的一个三角函数值,求它的其余各三角函数值时正负号的选择;
教学用具:
直尺、投影仪.
教学步骤:
1.设置情境
与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.
2.探索研究
(1)复习任意角三角函数定义
上节课我们已学习了任意角三角函数定义,如图1所示,任意角 的六个三角函数是如何定义的呢?
在 的终边上任取一点 ,它与原点的距离是 ,则角 的六个三角函数的值是:
; ;
; ;
(2)推导同角三角函数关系式
观察 及 ,当 时,有何关系?
当
下学期 4.4 同角三角函数的基本关系式由www.yf1234.com收集及整理,转载请说明出处www.yf1234.comwww.yf1234.com 且 时 、 及 有没有商数关系?
通过计算发现 与 互为倒数:∵ .
由于 ,
这些三角函数中还存在平方关系,请计算 的值.
由三角函数定义我们可以看到: .
∴ ,现在我们将同角三角函数的基本关系式总结如下:
①平方关系:
②商数关系:
③倒数关系:
即同一个角
下学期 4.4 同角三角函数的基本关系式由www.yf1234.com收集及整理,转载请说明出处www.yf1234.comwww.yf1234.com 的正弦、余弦的平方和等于1,商等于角 的正切,同一个角的正切、余切之积等于1(即同一个角的正切、余切互为倒数).上面这三个关系式,我们称之为恒等式,即当 取使关系式两边都有意义的任意值时,关系式两边的值相等,在第二个式中, 在第三个式中, 的终边不在坐标轴上,这时式中两边都有意义,以后解题时,如果没有特别说明,一般都把关系式看成是意义的.其次,在利用同角三角函数的基本关系式时,要注意其前提“同角”的条件.
(3)同角三角函数关系式的应用
同角三角函数关系式十分重要,应用广泛,其中一个重要应用是根据一个角的某一个三角函数,求出这个角的其他三角函数值.
【例1】已知 ,且 是第二象限角,求 , , 的值.
解:∵ ,且 ,∴ 是第二或第三象限角.
如果 是第二象限角,那么
如果 是第三象限角,那么
下学期 4.4 同角三角函数的基本关系式由www.yf1234.com收集及整理,转载请说明出处www.yf1234.com下学期 4.4 同角三角函数的基本关系式