(第一课时)
一.教学目标
1.理解平面向量的坐标的概念,会写出给定向量的坐标,会作出已知坐标表示的向量;
2.掌握平面向量的坐标运算,能准确表述向量的加法、减法、实数与向量的积的坐标运算法则,并能进行相关运算,进一步培养学生的运算能力;
3.通过学习向量的坐标表示,使学生进一步了解数形结合思想,认识事物之间的相互联系,培养学生辩证思维能力.
二.教学重点 理解平面向量的坐标表示,平面向量的坐标运算.
教学难点 对平面向量坐标表示的理解.
三.教学具准备
直尺、投影仪
四.教学过程
1.设置情境
师:平面内有点 ,点 ,能否用坐标来表示向量 呢?这就是我们今天要学习的平面向量的坐标运算.
(板书课题)平面向量的坐标运算
2.探索研究
(1)师:平面向量的基本定理的内容是什么?什么叫平面向量的基底?
生:如果 、 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数 、 ,使
我们把不共线的向全 、 叫做这一平面内所有向量的一组基底,这就是平面向全的基本定理.
师:如果在直角坐标系下,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,任作一向量a,由平面向量基本定理知,有且只有一对实数x,y使得
我们就把(x,y)叫做向量a的(直角)坐标,记作;
这就叫做向量的坐标表示
显然i=(1,0) j=(0,1) 0=(0,0)
如图(1)所示,以原点O为起点与向量a相等的向量
下学期 5.4 平面向量的坐标运算1由www.yf1234.com收集及整理,转载请说明出处www.yf1234.comwww.yf1234.com ,则A点的坐标就是向量a的坐标,反之设 ,则点A的坐标(x,y)也就是向量 的坐标.
问题: 1°已知 (x1, y1) (x2, y2) 求 + , - 的坐标
2°已知 (x, y)和实数λ, 求λ 的坐标
解: + =(x1 +y1 )+( x2 +y2 )=(x1+ x2) + (y1+y2)
即: +
下学期 5.4 平面向量的坐标运算1由www.yf1234.com收集及整理,转载请说明出处www.yf1234.comwww.yf1234.com =(x1+ x2, y1+y2) 同理: - =(x1- x2, y1-y2)
结论:两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。
同理可得:一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。
用减法法则:
∵ = - =( x2, y2) - (x1, y1)
= (x2- x1, y2- y1)
实数与向量积的坐标运算:已知 =(x, y) 实数λ
则λ =λ(x +y )=λx +λy
∴λ =(λx, λy)
结论:实数与向量的积的坐标,等于用这个实数乘原来的向量相应的坐标。
下学期 5.4 平面向量的坐标运算1