当前位置:扬帆学习网文章频道免费教案数学教案高三数学教案数的概念的发展

数的概念的发展

浏览次数: 241次| 发布日期:06-12 12:29:53 | 高三数学教案
标签:高三数学复习教案,高中数学教案,http://www.yf1234.com 数的概念的发展,
  2.理解并掌握虚数单位的定义及性质;

  3.掌握复数的定义及复数的分类.

教学重点

  虚数单位的定义、性质及复数的分类.

教学难点

  虚数单位的性质.

教学过程

  一、复习引入

  原始社会,由于计数的需要产生了自然数的概念,随着文字的产生和发展,出现了记数的符号,进而建立了自然数的概念。自然数的全体构成自然数集.

  为了表示具有相反意义的量引进了正负数以及表示没有的零,这样将数集扩充到有理数集

  有些量与量之间的比值,如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为解决这种矛盾,人们又引进了无理数,有理数和无理数合并在一起,构成实数集.

  数的概念是人类社会的生产和生活中产生和发展起来的,数学理论的研究和发展也推动着数的概念的发展,数已经成为现代社会生活和科学技术时刻离不开的科学语言和工具.

二、新课教学

(一)虚数的产生

  我们知道,在实数范围内,解方程 是无能为力的,只有把实数集扩充到复数集才能解决.对于复数 ab都是实数)来说,当 时,就是实数;当 时叫虚数,当 时,叫做纯虚数.可是,历史上引进虚数,把实数集扩充到复数集可不是件容易的事,那么,历史上是如何引进虚数的呢?

  16世纪意大利米兰学者卡当(1501—1576)在1545年发表的《重要的艺术》一书中,公布了三次方程的一般解法,被后人称之为“卡当公式”.他是第一个把负数的平方根写到公式中的数学

数的概念的发展由www.yf1234.com收集及整理,转载请说明出处www.yf1234.com
www.yf1234.com 家,并且在讨论是否可能把10分成两部分,使它们的乘积等于40时,他把答案写成 ,尽管他认为 这两个表示式是没有意义的、想象的、虚无飘渺的,但他还是把10分成了两部分,并使它们的乘积等于40.给出“虚数”这一名称的是法国数学家笛卡尔(1596—1650),他在《几何学》(1637年发表)中使“虚的数’‘与“实的数”相对应,从此,虚数才流传开来.

  数系中发现一颗新星——虚数,于是引起了数学界的一片困惑,很多大数学家都不承认虚数.德国数学家菜不尼茨(1664—1716)在1702年说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”.瑞士数学大师欧拉(1707—1783)说:“一切形如 习的数学式子都是不可能有的,想象的数,因为它们所表示的是负数的平方根.对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻.”然而,真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地.法国数学

上一页  [1] [2] [3] [4]  下一页


数的概念的发展

《数的概念的发展》相关文章: