○教学背景:对于椭圆方程,学生对焦点在X轴上的标准方程比较熟悉,解题时往往疏忽焦点在Y轴上的情形。于是我设置了这样一个题目,以期引起学生重视。
教学目标:加强对椭圆方程的认识,在解题中注意焦点的位置。
问题设置:例:设方程,回答下列问题:
(1)方程表示焦点在X轴上的椭圆,求实数m的取值范围。
(2)方程的准线与X轴平行,求实数m的取值范围。
(3)方程的一个焦点坐标为(0,1),求m的值。
(4)方程的离心率e=,求m的值。
教学要求:四个组每组一题,选代表板演,并说出老师选这题的意图。
教学意图:引导思考,合作交流,比较归纳。
【评析】
两相比照辨异同,举一反三旁类通。比较是确定客观事物彼此之间的不同点和相同点的一种思维方法。通过比较,能使我们认识事物本身所固有的特点(即在比较中求异),也能够认识同类事物的共点特点(即在比较中求同)。通过这一题多问,反复强调求解时要考虑焦点位置,意识得到强化。同时告诉学生把椭圆方程换一下,课后在去做,问题迎刃而解。通过对题目的背景的改变,让学生不断思考,互相启发,总结归纳出解题规律。这类题具有很强的严密性和发散性,通过训练把学生的思维引到一个广阔的空间,培养了学生思维的广度和深度。这样,通过“一题多问”和“一题多变”,拓展了思维空间,培养学生的创新思维。对高中学生来说,有利于培养他们学习数学的浓厚兴趣和创新精神。
【教学案例三】○教学背景:椭圆单元里有一类围绕焦点三角形而设置的题目,有规律可循。
问题设置:例:设P是椭圆上一点,F1、F2为椭圆的两个焦点,
(1)若,求P点坐标,三角形F1AF2的面积。
引导思考.自主探究.激活思维由www.yf1234.com收集及整理,转载请说明出处www.yf1234.comwww.yf1234.com
(2)若,求P点坐标,三角形F1AF2的面积。
(3)为钝角,求P点横坐标x0的取值范围。
教学要求:讲解问1,学生自做问2、3
引导思考.自主探究.激活思维